Sunday, March 28, 2010

C Aptitude Questions and Answers-8

Predict the output or error(s) for the following:
63. main()
{
int k=1;
printf("%d==1 is ""%s",k,k==1?"TRUE":"FALSE");
}

Answer:
1==1 is TRUE

Explanation:
When two strings are placed together (or separated by white-space) they are concatenated (this is called as "stringization" operation). So the string is as if it is given as "%d==1 is %s". The conditional operator( ?: ) evaluates to "TRUE".

64. main()
{
int y;
scanf("%d",&y); // input given is 2000
if( (y%4==0 && y%100 != 0) || y%100 == 0 )
printf("%d is a leap year");
else
printf("%d is not a leap year");
}

Answer:
2000 is a leap year

Explanation:
An ordinary program to check if leap year or not.

65. #define max 5
#define int arr1[max]
main()
{
typedef char arr2[max];
arr1 list={0,1,2,3,4};
arr2 name="name";
printf("%d %s",list[0],name);
}

Answer:
Compiler error (in the line arr1 list = {0,1,2,3,4})

Explanation:
arr2 is declared of type array of size 5 of characters. So it can be used to declare the variable name of the type arr2. But it is not the case of arr1. Hence an error.
Rule of Thumb:
#defines are used for textual replacement whereas typedefs are used for declaring new types.

66. int i=10;
main()
{
extern int i;
{
int i=20;
{
const volatile unsigned i=30;
printf("%d",i);
}
printf("%d",i);
}
printf("%d",i);
}

Answer:
30,20,10

Explanation:
'{' introduces new block and thus new scope. In the innermost block i is declared as,
const volatile unsigned
which is a valid declaration. i is assumed of type int. So printf prints 30. In the next block, i has value 20 and so printf prints 20. In the outermost block, i is declared as extern, so no storage space is allocated for it. After compilation is over the linker resolves it to global variable i (since it is the only variable visible there). So it prints i's value as 10.

67. main()
{
int *j;
{
int i=10;
j=&i;
}
printf("%d",*j);
}

Answer:
10

Explanation:
The variable i is a block level variable and the visibility is inside that block only. But the lifetime of i is lifetime of the function so it lives upto the exit of main function. Since the i is still allocated space, *j prints the value stored in i since j points i.

68. main()
{
int i=-1;
-i;
printf("i = %d, -i = %d \n",i,-i);
}

Answer:
i = -1, -i = 1

Explanation:
-i is executed and this execution doesn't affect the value of i. In printf first you just print the value of i. After that the value of the expression -i = -(-1) is printed.

69. #include
main()
{
const int i=4;
float j;
j = ++i;
printf("%d %f", i,++j);
}

Answer:
Compiler error

Explanation:
i is a constant. you cannot change the value of constant

70. #include
main()
{
int a[2][2][2] = { {10,2,3,4}, {5,6,7,8} };
int *p,*q;
p=&a[2][2][2];
*q=***a;
printf("%d..%d",*p,*q);
}

Answer:
garbagevalue..1

Explanation:
p=&a[2][2][2] you declare only two 2D arrays. but you are trying to access the third 2D(which you are not declared) it will print garbage values. *q=***a starting address of a is assigned integer pointer. now q is pointing to starting address of a.if you print *q meAnswer:it will print first element of 3D array.

71. #include
main()
{
register i=5;
char j[]= "hello";
printf("%s %d",j,i);
}

Answer:
hello 5

Explanation:
if you declare i as register compiler will treat it as ordinary integer and it will take integer value. i value may be stored either in register or in memory.

72. main()
{
int i=5,j=6,z;
printf("%d",i+++j);
}

Answer:
11

Explanation:
the expression i+++j is treated as (i++ + j)

No comments:

Post a Comment